Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging.
نویسندگان
چکیده
Akin to functional magnetic resonance imaging (fMRI), diffuse optical imaging (DOI) is a noninvasive method for measuring localized changes in hemoglobin levels within the brain. When combined with fMRI methods, multimodality approaches could offer an integrated perspective on the biophysics, anatomy, and physiology underlying each of the imaging modalities. Vital to the correct interpretation of such studies, control experiments to test the consistency of both modalities must be performed. Here, we compare DOI with blood oxygen level-dependent (BOLD) and arterial spin labeling fMRI-based methods in order to explore the spatial agreement of the response amplitudes recorded by these two methods. Rather than creating optical images by regularized, tomographic reconstructions, we project the fMRI image into optical measurement space using the optical forward problem. We report statistically better spatial correlation between the fMRI-BOLD response and the optically measured deoxyhemoglobin (R=0.71, p=1x10(-7)) than between the BOLD and oxyhemoglobin or total hemoglobin measures (R=0.38, p=0.04|0.37, p=0.05, respectively). Similarly, we find that the correlation between the ASL measured blood flow and optically measured total and oxyhemoglobin is stronger (R=0.73, p=5x10(-6) and R=0.71, p=9x10(-6), respectively) than the flow to deoxyhemoglobin spatial correlation (R=0.26, p=0.10).
منابع مشابه
Perfusion Functional Magnetic Resonance Imaging
Introduction Imaging sequences based upon blood oxygenation level dependent (BOLD) contrast are currently the predominant method for functional magnetic resonance imaging (fMRI) of the brain. BOLD weighted sequences offer both high contrast-to-noise ratio and good temporal resolution. The BOLD signal reflects the total amount of deoxyhemoglobin (dHBO2), and is thus a complex function of cerebra...
متن کاملRepeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging
Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...
متن کاملMeasurement of cerebral perfusion with arterial spin labeling: Part 1. Methods.
Arterial spin labeling (ASL) is a magnetic resonance imaging (MRI) method that provides a highly repeatable quantitative measure of cerebral blood flow (CBF). As compared to the more commonly used blood oxygenation level dependent (BOLD) contrast-based methods, ASL techniques measure a more biologically specific correlate of neural activity, with the potential for more accurate estimation of th...
متن کاملSimultaneous acquisition of gradient echo/spin echo BOLD and perfusion with a separate labeling coil.
Arterial spin labeling-based cerebral blood flow imaging complements blood oxygenation level dependent (BOLD) imaging with a measure that is more quantitative and has better specificity to neuronal activation. Relative to gradient echo BOLD, spin echo BOLD has better spatial specificity because it is less biased to large draining veins. Although there have been many studies comparing simultaneo...
متن کاملQuantitative analysis of arterial spin labeling FMRI data using a general linear model.
Arterial spin labeling techniques can yield quantitative measures of perfusion by fitting a kinetic model to difference images (tagged-control). Because of the noisy nature of the difference images investigators typically average a large number of tagged versus control difference measurements over long periods of time. This averaging requires that the perfusion signal be at a steady state and n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical optics
دوره 11 6 شماره
صفحات -
تاریخ انتشار 2006